ГОСТ Р ИСО 5725-5-2002
Группа Т80
ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
ТОЧНОСТЬ (ПРАВИЛЬНОСТЬ И ПРЕЦИЗИОННОСТЬ) МЕТОДОВ И РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ
Часть 5
Альтернативные методы определения прецизионности стандартного метода измерений
Accuracy (trueness and precision) of measurement methods and results. Part 5. Alternative methods for the determination of the precision of a standard measurement method
ОКС 17.020
ОКСТУ 0008
Дата введения 2002-11-01
Предисловие
1 РАЗРАБОТАН Федеральным государственным унитарным предприятием "Всероссийский научно-исследовательский институт метрологической службы" Госстандарта России (ВНИИМС), Всероссийским научно-исследовательским институтом стандартизации (ВНИИСтандарт), Всероссийским научно-исследовательским институтом классификации, терминологии и информации по стандартизации и качеству (ВНИИКИ) Госстандарта России
ВНЕСЕН Управлением метрологии и Научно-техническим управлением Госстандарта России
2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 23 апреля 2002 г. N 161-ст
3 Настоящий стандарт представляет собой полный аутентичный текст международного стандарта ИСО 5725-5:1998* "Точность (правильность и прецизионность) методов и результатов измерений. Часть 5. Альтернативные методы определения прецизионности стандартного метода измерений".
________________
* Доступ к международным и зарубежным документам, упомянутым здесь и далее по тексту, можно получить, перейдя по ссылке на сайт http://shop.cntd.ru. - Примечание изготовителя базы данных.
4 ВВЕДЕН ВПЕРВЫЕ
5 ИЗДАНИЕ (март 2009 г.) с Поправкой (ИУС 11-2003)
ПРЕДИСЛОВИЕ К ГОСУДАРСТВЕННЫМ СТАНДАРТАМ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСТ Р ИСО 5725-1-2002 - ГОСТ Р ИСО 5725-6-2002 ПОД ОБЩИМ ЗАГОЛОВКОМ "ТОЧНОСТЬ (ПРАВИЛЬНОСТЬ И ПРЕЦИЗИОННОСТЬ) МЕТОДОВ И РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ"
ПРЕДИСЛОВИЕ К ГОСУДАРСТВЕННЫМ СТАНДАРТАМ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСТ Р ИСО 5725-1-2002 - ГОСТ Р ИСО 5725-6-2002 ПОД ОБЩИМ ЗАГОЛОВКОМ "ТОЧНОСТЬ (ПРАВИЛЬНОСТЬ И ПРЕЦИЗИОННОСТЬ) МЕТОДОВ И РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ"
Целью разработки Государственных стандартов Российской Федерации ГОСТ Р ИСО 5725-1-2002, ГОСТ Р ИСО 5725-2-2002, ГОСТ Р ИСО 5725-3-2002, ГОСТ Р ИСО 5725-4-2002, ГОСТ Р ИСО 5725-5-2002, ГОСТ Р ИСО 5725-6-2002, далее - ГОСТ Р ИСО 5725, является прямое применение в Российской Федерации шести частей основополагающего международного стандарта ИСО 5725 под общим заголовком "Точность (правильность и прецизионность) методов и результатов измерений" в практической деятельности по метрологии (разработке, аттестации и применению методик выполнения измерений), стандартизации методов контроля (испытаний, измерений, анализа), испытаниям продукции, в том числе для целей подтверждения соответствия, оценке компетентности испытательных лабораторий согласно требованиям ГОСТ Р ИСО/МЭК 17025-2000*.
________________
* С 1 июля 2007 г. введен в действие ГОСТ Р ИСО/МЭК 17025-2006.
ГОСТ Р ИСО 5725 представляют собой полный аутентичный текст шести частей международного стандарта ИСО 5725, в том числе:
ГОСТ Р ИСО 5725-1-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Основные положения и определения";
ГОСТ Р ИСО 5725-2-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерений";
ГОСТ Р ИСО 5725-3-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 3. Промежуточные показатели прецизионности стандартного метода измерений";
ГОСТ Р ИСО 5725-4-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 4. Основные методы определения правильности стандартного метода измерений";
ГОСТ Р ИСО 5725-5-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 5. Альтернативные методы определения прецизионности стандартного метода измерений";
ГОСТ Р ИСО 5725-6-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике".
Каждая часть содержит аутентичный перевод предисловия и введения к международному стандарту ИСО 5725, а также предисловие к государственным стандартам Российской Федерации ГОСТ Р ИСО 5725-1-2002 - ГОСТ Р ИСО 5725-6-2002 и издается самостоятельно.
Пользование частями 2-6 ГОСТ Р ИСО 5725 в отдельности возможно только совместно с частью 1 (ГОСТ Р ИСО 5725-1), в которой установлены основные положения и определения, касающиеся всех частей ГОСТ Р ИСО 5725.
В соответствии с основными положениями ИСО 5725-1 (пункт 1.2) настоящий стандарт распространяется на методы измерений непрерывных (в смысле принимаемых значений в измеряемом диапазоне) величин, дающие в качестве результата измерений единственное значение. При этом это единственное значение может быть и результатом расчета, основанного на ряде измерений одной и той же величины.
Стандарты ИСО 5725 могут применяться для оценки точности выполнения измерений различных физических величин, характеризующих измеряемые свойства того или иного объекта, в соответствии со стандартизованной процедурой. При этом в пункте 1.2 стандарта ИСО 5725-1 особо отмечено, что стандарт может применяться для оценки точности выполнения измерений состава и свойств очень широкой номенклатуры материалов, включая жидкости, порошкообразные и твердые материалы - продукты материального производства или существующие в природе, при условии, что учитывают любую неоднородность материала.
Применяемый в международных стандартах термин "стандартный метод измерений" адекватен отечественному термину "стандартизованный метод измерений".
В ИСО 5725: 1994-1998 и ИСО/МЭК 17025-99 понятие "метод измерений" ("measurement method") включает совокупность операций и правил, выполнение которых обеспечивает получение результатов с известной точностью. Таким образом, понятие "метод измерений" по ИСО 5725 и ИСО/МЭК 17025 адекватно понятию "методика выполнения измерений (МВИ)" по ГОСТ Р 8.563-96 "Государственная система обеспечения единства измерений. Методики выполнения измерений" (пункт 3.1) и соответственно значительно шире по смыслу, чем определение термина "метод измерений" в Рекомендации по межгосударственной стандартизации РМГ 29-99 "Государственная система обеспечения единства измерений. Метрология. Основные термины и определения" (пункт 7.2).
Более того, в оригинале ИСО 5725 очень часто употребляется в качестве понятия "метод измерений" и английский термин "test method", перевод которого на русский язык - "метод испытаний" (см. примечание 1 к пункту 3.2 ИСО 5725-1) и который по смыслу совпадает с термином 6.2 ИСО 5725-1 "standard measurement method" (стандартизованный метод измерений). Соответственно в качестве термина "результат измерений" в оригинале стандарта чаще используется английский термин "test result" (см. пункт 3.2 ИСО 5725-1), причем в контексте как с термином "test method" (см. пункт 3.2), так и с термином "measurement method" (см. в оригинале, например, пункты 1.2 или 7.2.1 ИСО 5725-1).
При этом следует иметь в виду, что область применения ИСО 5725 - точность стандартизованных методов измерений, в том числе предназначенных для целей испытаний продукции, позволяющих количественно оценить характеристики свойств (показателей качества и безопасности) объекта испытаний (продукции). Именно поэтому во всех частях стандарта результаты измерений характеристик образцов, взятых в качестве выборки из партии изделий (или проб, отобранных из партии материала), являются основой для получения результатов испытаний всей партии (объекта испытаний). Когда объектом испытаний является конкретный образец (test speciment, sample), результаты измерений и испытаний могут совпадать. Такой подход имеет место в примерах по определению показателей точности стандартного (стандартизованного) метода измерений, содержащихся в ИСО 5725.
Следует отметить, что в отечественной метрологии точность (accuracy) и погрешность (error) результатов измерений, как правило, определяются сравнением результата измерений с истинным или действительным (условно истинным) значением измеряемой физической величины (являющимися фактически эталонными значениями измеряемых величин, выраженными в узаконенных единицах).
В условиях отсутствия необходимых эталонов, обеспечивающих воспроизведение, хранение и передачу соответствующих значений единиц величин, необходимых для оценки погрешности (точности) результатов измерений, и в отечественной, и в международной практике за действительное значение зачастую принимают общее среднее значение (математическое ожидание) установленной (заданной) совокупности результатов измерений. В ИСО 5725 эта ситуация отражена в термине "принятое опорное значение" (см. пункты 3.5 и 3.6 ГОСТ Р ИСО 5725-1) и рекомендуется стандартом ГОСТ Р ИСО 5725-1 для использования в этих случаях и в отечественной практике.
Термины "правильность" (trueness) и "прецизионность" (precision) в отечественных нормативных документах по метрологии до настоящего времени не использовались. При этом "правильность" - степень близости результата измерений к истинному или условно истинному (действительному) значению измеряемой величины или в случае отсутствия эталона измеряемой величины - степень близости среднего значения, полученного на основании большой серии результатов измерений (или результатов испытаний), к принятому опорному значению. Показателем правильности обычно является значение систематической погрешности (см. пункт 3.7 ГОСТ Р ИСО 5725-1).
В свою очередь "прецизионность" - степень близости друг к другу независимых результатов измерений, полученных в конкретных установленных условиях. Эта характеристика зависит только от случайных факторов и не связана с истинным или условно истинным значением измеряемой величины (см. пункт 3.12 ГОСТ Р ИСО 5725-1). Мера прецизионности обычно вычисляется как стандартное (среднеквадратическое) отклонение результатов измерений, выполненных в определенных условиях. Количественные значения мер прецизионности существенно зависят от заданных условий. Экстремальные показатели прецизионности - повторяемость, сходимость (repeatability) и воспроизводимость (reproducibility) регламентируют и в отечественных нормативных документах, в том числе в большинстве государственных стандартов на методы контроля (испытаний, измерений, анализа) (см. пункты 3.12-3.20 ГОСТ Р ИСО 5725-1).
В соответствии с ИСО 5725 цель государственных стандартов ГОСТ Р ИСО 5725 состоит в том, чтобы:
а) изложить основные положения, которые следует иметь в виду при оценке точности (правильности и прецизионности) методов и результатов измерений при их применении, а также при планировании экспериментов по оценке различных показателей точности (ГОСТ Р ИСО 5725-1);
б) регламентировать основной способ экспериментальной оценки повторяемости (сходимости) и воспроизводимости методов и результатов измерений (ГОСТ Р ИСО 5725-2);
в) регламентировать процедуру получения промежуточных показателей прецизионности методов и результатов измерений, изложив условия их применения и методы оценки (ГОСТ Р ИСО 5725-3);
г) регламентировать основные способы определения правильности методов и результатов измерений (ГОСТ Р ИСО 5725-4);
д) регламентировать для применения в определенных обстоятельствах несколько альтернатив основным способам (ГОСТ Р ИСО 5725-2 и ГОСТ Р ИСО 5725-4) определения прецизионности и правильности методов и результатов измерений, приведенных в ГОСТ Р ИСО 5725-5;
е) изложить некоторые практические применения показателей правильности и прецизионности (ГОСТ Р ИСО 5725-6).
Представленные в виде таблицы рекомендации по применению основных Положений ГОСТ Р ИСО 5725 в деятельности по метрологии, стандартизации, испытаниям, оценке компетентности испытательных лабораторий со ссылками на нормы государственных стандартов Российской Федерации, содержащих требования к выполнению соответствующих работ, приведены в приложении к предисловию в ГОСТ Р ИСО 5725-1.
Алгоритмы проведения экспериментов по оценке повторяемости, воспроизводимости, промежуточных показателей прецизионности, показателей правильности (характеристик систематической погрешности) методов и результатов измерений рекомендуется внедрять через программы экспериментальных метрологических исследований показателей точности (характеристик погрешности) результатов измерений, выполняемых по разрабатываемой МВИ, и (или) через программы контроля показателей точности применяемых МВИ.
Использование приведенных в приложениях А к каждому стандарту условных обозначений в качестве обязательных рекомендуется только для тех показателей точности, которые до настоящего времени в отечественной метрологической практике не использовались (например, для показателей по пунктам 3.9-3.12 ГОСТ Р ИСО 5725-1). Для остальных показателей и критериев используемые в ГОСТ Р ИСО 5725 условные обозначения, как правило, могут применяться наряду с условными обозначениями этих показателей и критериев, принятыми в действующих отечественных документах (например, предел повторяемости (сходимости) с условным обозначением по пункту 3.16 ГОСТ Р ИСО 5725-1 наряду с условным обозначением , принятым для этого показателя в ряде рекомендаций по метрологии, а также в государственных стандартах на методы испытаний продукции).
ПРЕДИСЛОВИЕ К МЕЖДУНАРОДНОМУ СТАНДАРТУ ИСО 5725
Международная организация по стандартизации (ИСО) является Всемирной федерацией национальных организаций по стандартизации (комитетов - членов ИСО). Разработка международных стандартов обычно осуществляется техническими комитетами ИСО. Каждый член ИСО, заинтересованный в деятельности соответствующего технического комитета, имеет право быть представленным в этом комитете. Правительственные и неправительственные международные организации, сотрудничающие с ИСО, также принимают участие в этой работе. ИСО тесно сотрудничает с Международной электротехнической комиссией (МЭК) по всем вопросам стандартизации в области электротехники.
Проекты международных стандартов, принятые техническими комитетами, направляются техническим комитетам - членам ИСО на голосование перед их утверждением Советом ИСО в качестве международных стандартов. Стандарты утверждаются в качестве международных в соответствии с установленными в ИСО требованиями: в случае их одобрения по меньшей мере 75% комитетов - членов ИСО, принимавших участие в голосовании.
Международный стандарт ИСО 5725-5 был подготовлен Техническим комитетом ИСО/ТК 69 "Применение статистических методов", Подкомитетом ПК 6 "Методы и результаты измерений".
ИСО 5725 состоит из следующих частей под общим заголовком "Точность (правильность и прецизионность) методов и результатов измерений":
Часть 1. Основные положения и определения
Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерений
Часть 3. Промежуточные показатели прецизионности стандартного метода измерений
Часть 4. Основные методы определения правильности стандартного метода измерений
Часть 5. Альтернативные методы определения прецизионности стандартного метода измерений
Часть 6. Использование значений точности на практике
ИСО 5725 (части 1-6) в совокупности аннулирует и заменяет ИСО 5725:1986, область распространения которого была расширена включением правильности (в дополнение к прецизионности) и условий промежуточной прецизионности (в дополнение к условиям повторяемости и воспроизводимости).
Приложение А является обязательным для настоящей части ИСО 5725, приложения В, С и D - справочные.
ВВЕДЕНИЕ К МЕЖДУНАРОДНОМУ СТАНДАРТУ ИСО 5725
0.1 В ИСО 5725 для описания точности метода измерений используют два термина: "правильность" и "прецизионность". Термин "правильность" характеризует степень близости среднего значения большого числа результатов испытаний к истинному или принятому опорному значению, термин "прецизионность" - степень близости результатов испытаний друг к другу.
0.2 Общие положения об этих понятиях представлены в ИСО 5725-1 и поэтому здесь не повторяются. Эта часть ИСО 5725 должна применяться совместно с ИСО 5725-1, поскольку в ней даны определения и общие положения.
0.3 ИСО 5725-2 посвящен методам количественной оценки прецизионности, а именно стандартных отклонений повторяемости и воспроизводимости посредством межлабораторных экспериментов. В нем рассматривается основной метод такой оценки, использующий эксперимент с однородными уровнями. ИСО 5725-5 описывает методы оценки, альтернативные этому основному.
a) При пользовании основным методом имеется риск, что оператор допустит, что результат измерения одной пробы повлияет на результат последующего измерения другой пробы того же материала, вызывая систематическую погрешность в оценке стандартных отклонений повторяемости и воспроизводимости. Когда этот риск считают значительным, модель с разделенными уровнями, описанная в ИСО 5725-5, может быть предпочтительнее, как снижающая этот риск.
b) Основной метод требует подготовки ряда идентичных проб материала для использования в эксперименте. С гетерогенными материалами это может быть невозможно, так как применение основного метода потом дает оценки стандартного отклонения воспроизводимости, которые искажаются различием между пробами. Схема для гетерогенного материала, приведенная в ИСО 5725-5, дает информацию о неоднородности проб, которая не выявляется основным методом; она может быть использована для расчетов оценки воспроизводимости, из которой исключена разница между пробами.
c) Основной метод требует проверок на наличие выбросов, чтобы идентифицировать данные, которые должны быть исключены из расчета стандартных отклонений повторяемости и воспроизводимости. Исключение выбросов может иногда значительно повлиять на оценку стандартных отклонений повторяемости и воспроизводимости; но на практике в случаях, когда применяют контроль выбросов, у аналитика есть основание принять решение, какие данные исключить. ИСО 5725-5 описывает робастные методы анализа данных, которые могут применяться для расчета стандартных отклонений повторяемости и воспроизводимости из данных, содержащих выбросы, без применения проверок на наличие выбросов в целях исключения таких данных, так что эти результаты больше не влияют на решение аналитика.
1 Область применения
В настоящем стандарте детально представлены альтернативы основному методу определения стандартных отклонений повторяемости и воспроизводимости стандартного метода измерений, именуемые моделью эксперимента с разделенными уровнями и моделью эксперимента для гетерогенных материалов, а также описано использование робастных методов для анализа результатов экспериментов по оценке прецизионности без применения проверок наличия выбросов с целью их исключения из расчетов, и особенно - подробное использование одного из таких методов.
Настоящий стандарт дополняет ГОСТ Р ИСО 5725-2, описывая альтернативные методы, которые могут быть в отдельных случаях предпочтительнее основного метода, приведенного в ГОСТ Р ИСО 5725-2, и предусматривая робастный метод анализа, который дает оценки стандартных отклонений повторяемости и воспроизводимости, в меньшей мере зависимые от решений, принимаемых на основе данных аналитика, по сравнению с методами оценки, описанными в ГОСТ Р ИСО 5725-2.
2 Нормативные ссылки
В настоящем стандарте использованы ссылки на следующие стандарты:
ГОСТ Р ИСО 5725-1-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Основные положения и определения.
ГОСТ Р ИСО 5725-2-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерений.
3 Определения
В настоящем стандарте применяют термины в соответствии с ИСО 3534-1 [1] и ГОСТ Р ИСО 5725-1.
Условные обозначения, использованные в ГОСТ Р ИСО 5725, приведены в приложении А.
4 Модель эксперимента с разделенными уровнями
4.1 Применение модели
4.1.1 Эксперимент с однородными уровнями, описанный в ГОСТ Р ИСО 5725-2, требует по две или более идентичных проб материала для испытаний в каждой лаборатории - участнице эксперимента на каждом уровне. При этом имеется риск, что оператор допустит влияние результата предыдущих измерений одной пробы на результат последующего измерения другой пробы того же материала. В этом случае результаты эксперимента по оценке прецизионности будут искажены: оценки стандартного отклонения повторяемости будут уменьшены, а оценки межлабораторного стандартного отклонения возрастут. В эксперименте с разделенными уровнями каждую лабораторию - участницу эксперимента снабжают двумя подобными пробами материала для каждого уровня эксперимента, а операторам сообщают, что пробы не идентичны, но не информируют о степени их различия. Эксперимент с разделенными уровнями обеспечивает, таким образом, возможность определения стандартных отклонений повторяемости и воспроизводимости стандартного метода измерений способом, снижающим риск воздействия результата измерений, полученного на одной пробе, на результат измерений, полученный в эксперименте на другой пробе.
4.1.2 Данные, полученные на одном уровне в эксперименте с разделенными уровнями, можно представить на графике, в котором данные для одной пробы материала наносят против данных для другой пробы, относящейся к тому же уровню. Пример дан на рисунке 1. Такие графики могут помочь идентифицировать те лаборатории, которые имеют наибольшие систематические погрешности относительно других лабораторий, и исследовать источники наибольших лабораторных систематических погрешностей с целью принятия корректирующих действий.
4.1.3 В общем случае стандартные отклонения повторяемости и воспроизводимости метода измерений зависят от уровня измеряемой характеристики материала. Например, когда результат измерений пропорционален определяемому содержанию элемента, стандартные отклонения повторяемости и воспроизводимости обычно возрастают пропорционально возрастанию содержания элемента. Для эксперимента с разделенными уровнями необходимо, чтобы две пробы материала, используемые на одном уровне эксперимента, были настолько подобны, чтобы можно было ожидать тех же стандартных отклонений повторяемости и воспроизводимости. При этом для целей эксперимента с разделенными уровнями приемлемо, если две пробы материала, используемые на одном уровне, дают почти одинаковые результаты измерений, и не следует добиваться, чтобы эти результаты существенно отличались.
Во многих химических аналитических методах матрица с содержанием анализируемого вещества может влиять на прецизионность, тогда как для эксперимента с разделенными уровнями требуются для каждого уровня две пробы материала с одинаковыми матрицами. Подобная проба материала может иногда быть приготовлена путем добавки интересующего нас вещества. Для материалов природного или промышленного происхождения может быть трудно найти два достаточно подобных продукта, необходимых для эксперимента с разделенными уровнями: в этом случае возможным решением является использование раствора, полученного на основе двух партий одного и того же продукта. Необходимо помнить, что целью выбора материалов для эксперимента с разделенными уровнями является обеспечение операторов пробами, от эксперимента с которыми не ожидают идентичности.
4.2 План эксперимента
4.2.1 План эксперимента с разделенными уровнями показан в таблице 1.
Число лабораторий-участниц , каждая из которых испытывает по две пробы на уровнях.
Две пробы внутри уровня обозначены (проба одного материала) и (проба другого, подобного материала).
4.2.2 Данные эксперимента с разделенными уровнями обозначают , где - номер лаборатории (); - уроваень (); - проба ( или ).
4.3 Организация эксперимента
4.3.1 Руководство по планированию эксперимента с разделенными уровнями приведено в разделе 6 ГОСТ Р ИСО 5725-1. Подраздел 6.3 ГОСТ Р ИСО 5725-1 содержит формулы (использующие величину, обозначенную буквой А), необходимые для принятия решений о числе лабораторий, привлекаемых к участию в эксперименте. Соответствующие формулы для эксперимента с разделенными уровнями приведены ниже.
Примечание - Формулы получены методом, описанным в примечании 24 ГОСТ Р ИСО 5725-1.
Для аналитического выражения неопределенности оценок стандартных отклонений повторяемости и воспроизводимости используют следующие равенства.
Для повторяемости
. (1)
Для воспроизводимости
, (2)
где .
При = 2 формулы (1) и (2) совпадают с формулами (9) и (10) ГОСТ Р ИСО 5725-1, за исключением того, что в них вместо из ГОСТ Р ИСО 5725-1 появляется - 1. Это небольшая разница, так что для представления неопределенности оценок стандартных отклонений повторяемости и воспроизводимости в эксперименте с разделенными уровнями могут быть использованы таблица 1 и рисунки B.1 и В.2 ГОСТ Р ИСО 5725-1.
Неопределенность оценки систематической погрешности метода измерений в эксперименте с разделенными уровнями рассчитывают в соответствии с формулой (13) из ГОСТ Р ИСО 5725-1 для = 2 или определяют непосредственно из таблицы 2 ГОСТ Р ИСО 5725-1.
Неопределенность оценки лабораторной систематической погрешности в эксперименте с разделенными уровнями рассчитывают по уравнению (16) ГОСТ Р ИСО 5725-1 для = 2. Поскольку число параллельных определений в эксперименте с разделенными уровнями равно двум, это не позволяет уменьшить неопределенность оценки лабораторной систематической погрешности увеличением числа параллельных определений. (Если необходимо снизить эту неопределенность, то необходимо использовать эксперимент с однородными уровнями).
4.3.2 Следуя руководству, приведенному в разделах 5 и 6 ГОСТ Р ИСО 5725-2, следует отнестись с вниманием к деталям организации эксперимента с разделенными уровнями. Число параллельных определений в ГОСТ Р ИСО 5725-2 должно быть равным числу параллельных определений в эксперименте с разделенными уровнями, то есть двум.
Пробы и должны быть распределены среди участников случайным образом, причем процедуры рандомизации для и должны быть независимы. При этом необходимо, чтобы эксперты-статистики имели точную информацию о том, какие результаты были получены на материале и какие - на материале на каждом уровне эксперимента. Однако пробы следует зашифровать так, чтобы скрыть эту информацию от участников эксперимента.
Таблица 1 - Рекомендуемая форма для сравнения данных эксперимента с разделенными уровнями
4.4 Статистическая модель
4.4.1 Основная модель, используемая в настоящем стандарте, дана равенством (1) в разделе 5 ГОСТ Р ИСО 5725-1. Там установлено, что для оценивания точности (правильности и прецизионности) метода измерений каждый результат измерения полезно представлять как сумму трех составляющих:
, (3)
где для определенного испытуемого материала:
- общее среднее значение для определенного уровня = 1, …, ;
- лабораторная составляющая систематической погрешности в условиях повторяемости в определенной лаборатории = 1, ..., на определенном уровне = 1, ..., ;
- случайная погрешность результата измерений = 1, ..., , полученная в лаборатории на уровне в условиях повторяемости.
4.4.2 Для эксперимента с разделенными уровнями эта модель принимает вид
. (4)
Это неравенство отличается от равенства (3) только одной деталью: индекс в означает, что в соответствии с равенством (4) общее среднее значение может теперь зависеть от материала или ( = 1 или 2) на уровне .
Отсутствие индекса в означает допущение, что систематическая ошибка, связанная с лабораторией , не зависит от материала или на определенном уровне. Вот почему так важно, чтобы эти два материала были бы однородными (одинаковыми).
4.4.3 Определяют среднее значение в базовом элементе (ячейке)
(5)
и внутриэлементное расхождение (разброс)
. (6)
4.4.4 Общее среднее значение для уровня в эксперименте с разделенными уровнями может быть определено как
. (7)
4.5 Статистический анализ данных эксперимента с разделенными уровнями
4.5.1 Данные эксперимента сводят в таблицу (см. таблицу 1). Каждая комбинация лаборатории и уровня дает базовый элемент (ячейку) в этой таблице, а также содержит два результата и .
Рассчитывают - расхождения в элементах и сводят их в таблицу (см. таблицу 2). Метод анализа требует, чтобы все расхождения были рассчитаны с сохранением знака разности
.
Рассчитывают средние значения и сводят их в таблицу (см. таблицу 3).
4.5.2 Если элемент в таблице 1 не содержит двух результатов измерений (например, потому, что пробы были испорчены или данные исключены в последующем как выбросы), то соответствующие элементы в таблицах 2 и 3 оставляют пустыми.
4.5.3 Для каждого уровня эксперимента рассчитывают среднее и стандартное отклонения расхождений в графе таблицы 2 по формулам:
, (8)
, (9)
где - знак суммирования по всем лабораториям = 1, 2, ..., .
Если в таблице 2 имеются пустые элементы, то теперь становится числом элементов в графе таблицы 2, содержащих данные, и суммирование выполняют без пустых элементов.
4.5.4 Для каждого уровня в эксперименте рассчитывают среднее и стандартное отклонения средних значений в графе таблицы 3, используя формулы:
, (10)
, (11)
где - знак суммирования по всем лабораториям = 1, 2, ..., .
Если в таблице 3 имеются пустые элементы, то теперь становится числом элементов в графе , содержащих данные, и суммирование выполняют без пустых элементов.
4.5.5 Для проверки совместимости данных и наличия выбросов, как описано в 4.6, используют таблицы 2, 3 и статистики, рассчитанные по формулам (8-11). При исключении данных пересчитывают статистики.
4.5.6 Рассчитывают стандартные отклонения повторяемости и воспроизводимости по формулам:
, (12)
. (13)
4.5.7 Исследуют, зависят ли и от среднего , и, если это так, находят соответствующие функциональные соотношения, используя методы, описанные в 7.5 ГОСТ Р ИСО 5725-2.
Таблица 2 - Рекомендуемая форма табулирования расхождений в базовых элементах для эксперимента с разделенными уровнями
Таблица 3 - Рекомендуемая форма табулирования средних значений в базовых элементах для эксперимента с разделенными уровнями
4.6 Исследование данных на совместимость и наличие выбросов
4.6.1 Проверяют данные на совместимость, используя статистику , описанную в 7.3.1 ГОСТ Р ИСО 5725-2.
Чтобы проконтролировать совместимость расхождений в базовых элементах, рассчитывают серию для статистики по формуле
. (14)
Для контроля совместимости средних значений в базовых элементах рассчитывают серию для статистики по формуле
. (15)
Для оценки различий лабораторий с точки зрения совместимости полученных данных, наносят на график обе серии в порядке возрастания уровней, но сгруппировав их по лабораториям, как показано на рисунках 2 и 3. Интерпретация этих графиков подробно рассмотрена в 7.3.1 ГОСТ Р ИСО 5725-2. Если лаборатория получила худшую повторяемость по сравнению с другими, это будет видно по необычно большому числу больших значений на графике, построенном по расхождениям в элементах. Если данные лаборатории, в основном, содержат систематическую погрешность, то это будет видно по значениям на графике, построенном для средних значений в элементах: большинство из них расположится в одном направлении. В любом случае лаборатория должна изучить причины расхождений и доложить о них организатору эксперимента.
4.6.2 Для контроля данных на наличие квазивыбросов и выбросов используют критерий Граббса, описанный в 7.3.4 ГОСТ Р ИСО 5725-2.
Для контроля наличия квазивыбросов и выбросов во внутриэлементных расхождениях, применяют тестирование по критерию Граббса к значениям в каждой графе таблицы 2 по очереди.
Для контроля наличия квазивыбросов и выбросов в средних значениях элементов применяют тестирование по критерию Граббса к значениям в каждой графе таблицы 3 по очереди.
Интерпретация результатов тестирования полностью рассмотрена в 7.3.2 ГОСТ Р ИСО 5725-2. Их используют для идентификации результатов, которые настолько не соответствуют остальным данным эксперимента, что в случае их включения в расчеты стандартных отклонений повторяемости и воспроизводимости они окажут существенное влияние на значения этих статистик. Обычно данные, идентифицированные как выбросы, исключают из расчетов, а данные, идентифицированные как квазивыбросы, включают в расчеты, если не имеется серьезных оснований для принятия других решений. Если результаты тестирования показывают, что данные в одной из таблиц 2 или 3 должны быть исключены из расчетов стандартных отклонений повторяемости и воспроизводимости, то соответствующие значения в другой таблице также должны быть исключены.
4.7 Представление результатов эксперимента
4.7.1 В 7.7 ГОСТ Р ИСО 5725-2 даны рекомендации по:
- созданию совета экспертов специально для организации эксперимента и рассмотрения его результатов;
- представлению результатов статистического анализа совету экспертов;
- решениям, принимаемым советом экспертов по результатам рассмотрения;
- подготовке полного отчета.
4.7.2 Рекомендации по форме представления установленных стандартных отклонений повторяемости и воспроизводимости стандартного метода измерений даны в 7.1 ГОСТ Р ИСО 5725-1.
4.8 Пример 1. Эксперимент с разделенными уровнями
4.8.1 Таблица 4 содержит данные эксперимента [2] по определению содержания протеина в кормах методом сжигания. Число лабораторий-участниц - девять, эксперимент содержал 14 уровней. В каждом уровне использовались две пробы кормов с одинаковой массовой долей протеина.
Таблица 4 - Пример 1. Определение массовой доли протеина в кормах (в процентах)
Номер лаборатории | Уровень |