--> -->

ГОСТ Р ИСО 16269-7-2004
Статистические методы. Статистическое представление данных. Медиана. Определение точечной оценки и доверительных интервалов

ГОСТ Р ИСО 16269-7-2004

Группа Т59


НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ


Статистические методы

     
СТАТИСТИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ ДАННЫХ.
МЕДИАНА

     
Определение точечной оценки и доверительных интервалов

     
Statistical methods. Statistical interpretation of data. Median.
Estimation and confidence intervals



ОКС 03.120.30

Дата введения 2004-06-01

Предисловие

1 ПОДГОТОВЛЕН Техническим комитетом по стандартизации ТК 125 "Статистические методы в управлении качеством продукции" на основе собственного аутентичного перевода стандарта, указанного в пункте 4

2 ВНЕСЕН Научно-техническим управлением Госстандарта России

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 27 января 2004 г. N 34-ст

4 Настоящий стандарт идентичен международному стандарту ИСО 16269-7-2001. "Статистическое представление данных. Часть 7. Медиана. Определение точечной оценки и доверительных интервалов" (ISO 16269-7:2001 "Statistical interpretation of data - Part 7: Median - Estimation and confidence intervals")

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5 (подраздел 3.6).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты, сведения о которых приведены в дополнительном приложении С

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в указателе "Национальные стандарты", а текст этих изменений - в информационных указателях "Национальные стандарты". В случае пересмотра или отмены настоящего стандарта соответствующая информация будет опубликована в информационном указателе "Национальные стандарты"

1 Область применения

     1 Область применения


Настоящий стандарт устанавливает процедуры определения точечной и интервальной оценок медианы для любой совокупности случайных величин, описываемой непрерывной функцией распределения. Приведенные в стандарте методы не требуют знания функции распределения. Аналогичные процедуры могут применяться для определения оценок квартилей и других процентных точек распределения.

Примечание - Медиана - 50%-ная точка распределения.

2 Нормативные ссылки


В настоящем стандарте использована ссылка на следующий стандарт:

ИСО 3534-1:1993 Статистика. Словарь и условные обозначения. Часть 1. Вероятность и основные статистические термины.

3 Термины, определения и обозначения

3.1 Термины и определения

В настоящем стандарте применены термины по ИСО 3534-1, а также следующие термины с соответствующими определениями:

3.1.1 ГОСТ Р ИСО 16269-7-2004 Статистические методы. Статистическое представление данных. Медиана. Определение точечной оценки и доверительных интервалов-я порядковая статистика выборки (ГОСТ Р ИСО 16269-7-2004 Статистические методы. Статистическое представление данных. Медиана. Определение точечной оценки и доверительных интервалов-th order statistic of a sample):

Значение ГОСТ Р ИСО 16269-7-2004 Статистические методы. Статистическое представление данных. Медиана. Определение точечной оценки и доверительных интервалов-гo элемента выборки, когда все элементы выборки расположены в таком порядке, при котором каждый последующий элемент выборки более или равен (не менее) предыдущему (порядок неубывания).

Примечание - Для выборки из ГОСТ Р ИСО 16269-7-2004 Статистические методы. Статистическое представление данных. Медиана. Определение точечной оценки и доверительных интервалов элементов, расположенных в порядке неубывания (ГОСТ Р ИСО 16269-7-2004 Статистические методы. Статистическое представление данных. Медиана. Определение точечной оценки и доверительных интервалов), ГОСТ Р ИСО 16269-7-2004 Статистические методы. Статистическое представление данных. Медиана. Определение точечной оценки и доверительных интервалов-й порядковой статистикой является элемент ГОСТ Р ИСО 16269-7-2004 Статистические методы. Статистическое представление данных. Медиана. Определение точечной оценки и доверительных интервалов.

3.1.2 медиана непрерывного распределения (median of a continuous probability distribution): Такая величина, когда каждая из долей распределения, лежащих по обе стороны от нее, равна 0,5.

Примечание - В настоящем стандарте для медианы непрерывного распределения применен термин "медиана совокупности" и обозначен буквой М.

3.2 Обозначения

В настоящем стандарте применены следующие обозначения:

ГОСТ Р ИСО 16269-7-2004 Статистические методы. Статистическое представление данных. Медиана. Определение точечной оценки и доверительных интервалов - нижняя граница значений случайной величины в совокупности;

ГОСТ Р ИСО 16269-7-2004 Статистические методы. Статистическое представление данных. Медиана. Определение точечной оценки и доверительных интервалов - верхняя граница значений случайной величины в совокупности;

ГОСТ Р ИСО 16269-7-2004 Статистические методы. Статистическое представление данных. Медиана. Определение точечной оценки и доверительных интервалов - уровень доверия;

ГОСТ Р ИСО 16269-7-2004 Статистические методы. Статистическое представление данных. Медиана. Определение точечной оценки и доверительных интервалов - постоянная, используемая для определения величины ГОСТ Р ИСО 16269-7-2004 Статистические методы. Статистическое представление данных. Медиана. Определение точечной оценки и доверительных интервалов в уравнении (1);

ГОСТ Р ИСО 16269-7-2004 Статистические методы. Статистическое представление данных. Медиана. Определение точечной оценки и доверительных интервалов - номер порядковой статистики, используемый для определения нижней доверительной границы;

ГОСТ Р ИСО 16269-7-2004 Статистические методы. Статистическое представление данных. Медиана. Определение точечной оценки и доверительных интервалов - медиана совокупности;

ГОСТ Р ИСО 16269-7-2004 Статистические методы. Статистическое представление данных. Медиана. Определение точечной оценки и доверительных интервалов - объем выборки;

ГОСТ Р ИСО 16269-7-2004 Статистические методы. Статистическое представление данных. Медиана. Определение точечной оценки и доверительных интервалов - нижняя доверительная граница, рассчитанная по выборке;

ГОСТ Р ИСО 16269-7-2004 Статистические методы. Статистическое представление данных. Медиана. Определение точечной оценки и доверительных интервалов - верхняя доверительная граница, рассчитанная по выборке;

ГОСТ Р ИСО 16269-7-2004 Статистические методы. Статистическое представление данных. Медиана. Определение точечной оценки и доверительных интервалов - квантиль стандартного нормального распределения;

ГОСТ Р ИСО 16269-7-2004 Статистические методы. Статистическое представление данных. Медиана. Определение точечной оценки и доверительных интервалов - ГОСТ Р ИСО 16269-7-2004 Статистические методы. Статистическое представление данных. Медиана. Определение точечной оценки и доверительных интервалов-й элемент выборки, когда элементы выборки расположены в порядке неубывания (каждый последующий элемент ряда более или равен предыдущему);

ГОСТ Р ИСО 16269-7-2004 Статистические методы. Статистическое представление данных. Медиана. Определение точечной оценки и доверительных интервалов - выборочное значение медианы (оценка медианы, рассчитанная по выборочным данным);

ГОСТ Р ИСО 16269-7-2004 Статистические методы. Статистическое представление данных. Медиана. Определение точечной оценки и доверительных интервалов - значение промежуточных вычислений при определении величины ГОСТ Р ИСО 16269-7-2004 Статистические методы. Статистическое представление данных. Медиана. Определение точечной оценки и доверительных интервалов [см. уравнение (1)].

4 Условия применения


Метод, описанный в настоящем стандарте, применим при выполнении следующих условий:

- генеральная совокупность описывается непрерывной функцией распределения;

- выборка составляется случайным образом.

Примечание - Для случаев, когда распределение совокупности может быть описано нормальным распределением, медиана совокупности совпадает с математическим ожиданием. В этом случае могут применяться методы определения доверительных границ для математического ожидания совокупности.

Copyright © 2024